Abstract #81

Influence of cutting height on nutrient composition and yield of whole-plant corn silage through a meta-analysis

E. M. Paula¹, B. A. Saylor^{*1}, J. Goeser^{2,3}, and L. F. Ferraretto¹

¹Department of Animal Sciences, University of Florida, Gainesville, FL

²Department of Dairy Science, University of Wisconsin, Madison, WI

³Rock River Laboratory Inc., Watertown, WI

2019 ADSA Annual Meeting June 23-26 Cincinnati, OH

UF IFAS

Outline

- Introduction
- Objectives
- Materials and Methods
- Results
- Conclusions and Implications

Introduction

- Corn silage is a critical forage source for dairy cattle – provides both peNDF and energy
- Multiple factors contribute to corn silage quality:
 - Hybrid type
 - Crop maturity
 - Kernel processing
 - Cutting height

Introduction

- Increasing cutting height:
 - grain to stover ratio
 - energy content
 - NDFD
 - **Vield**

Low vs. High Cut Corn Silage

Average of 7 studies					
	Low	High			
Cutting height, cm	16.9	52.3			
NDF, % of DM	40.1	37.2			
Starch, % of DM	31.5	34.5			
ivNDFD, % of NDF	52.3	55.4			
Yield, Mg of DM/ha	17.3	15.3			

Ferraretto et al., 2018

Introduction

- Increasing cutting height will:
 - 🛉 grain: stover
 - energy content
 - NDFD
 - **Vield**
- How do we decide if there is value in increasing cutting height at the expense of DM yield?
- A thorough evaluation of the benefits and drawbacks of increasing corn silage cutting height is needed

Objectives

- Several studies have evaluated the influence of cutting height on corn silage yield and quality
- However, an evaluation across multiple studies has yet to be conducted
- Our objective was to assess the influence of cutting height on nutrient composition and yield of whole-plant corn silage through a meta-analysis

Materials and Methods

- Meta analytical approach using a dataset comprised of 10 published studies and 64 treatment means
- BMR treatment means were not included in the meta-analysis
- Independent variable: cutting height
- Dependent variables:
 - DM
 - Starch
 - NDF
 - NDFD (30 and 48 h ruminal in vitro and in situ)
 - DM yield (Mg/ha) and milk production (kg/Mg; Milk2006; Shaver et al., 2006)

Materials and Methods

- Data analyzed using PROC MIXED in SAS
- Model included fixed effect of treatment and random effect of trial
- 17 variance-covariance structures were tested and Akaike's Information Criteria (AIC) was used to define best fit for final predictive equations

Descriptive Statistics

	No. of	No. of				
	studies	means	Mean	SD	Max	Min
Cutting height, cm	10	64	36	21	100	10
DM, % of as-fed	9	62	36.4	4.3	46.9	28.7
CP, % of DM	10	64	7.8	0.7	8.9	6.4
NDF, % of DM	10	64	40.2	4.7	48.4	25.3
Lignin, % of DM	7	25	3.1	0.8	5.4	1.6
Starch, % of DM	8	55	25.3	9.3	47.0	9.2
Ash, % of DM	6	26	4.3	1.0	5.9	2.5
NDFD, % of NDF	7	49	58.9	12.8	78.8	30.3
DM yield, Mg/ha	8	52	15.0	2.5	23.0	10.8
Milk yield, kg/Mg	6	43	1682	289	2310	928

UF IFAS UNIVERSITY of FLORIDA

Effect of cutting height on nutrient composition and yield

Dependent variables	n	Intercept	SE	Slope	SE	P - value	AIC
DM, % of as-fed	62	32.50	1.35	0.0859	0.032	0.02	390
CP, % of DM	64	7.71	0.17	0.004	0.002	0.11	92
Starch, % of DM	55	27.70	1.83	0.0819	0.0234	0.01	322
NDF, % of DM	64	43.54	1.00	-0.0978	0.0189	0.001	339
Lignin, % of DM	25	3.65	0.34	-0.0115	0.0058	0.08	63
Ash, % of DM	26	7.77	0.35	-0.0117	0.0031	0.01	64

Effect of cutting height on digestibility, DM yield, and milk production

Dependent variables	n	Intercept	SE	Slope	SE	P - value	AIC
NDFD ¹ , % of NDF	49	50.31	3.77	0.0796	0.0278	0.01	301
DM yield, Mg/ha	52	17.82	0.79	-0.0481	0.0061	0.001	165
Milk yield, kg/Mg ²	43	1,542	106	1.868	1.000	0.09	167

¹NDFD=ruminal in vitro or in situ NDF digestibility at 30 or 48 h ²Estimated using Milk2006 (Shaver et al., 2006)

Summary

- Yield of DM was reduced by 0.05 Mg/ha for each cm of increased cutting height
- For each cm increase in cutting height there was an increase of:
 - 0.09 % units in DM
 - 0.08 % units in Starch
 - 0.08 % units in NDFD

Simulation

	CS	High-cut CS	High-cut simulation
Cutting height, cm	15	60	60
NDF, % of DM	37.7	33.8 ←	→ 33.2
Starch, % of DM	37.5	41.7 ←	→ 41.1
NDFD, % of NDF	49.6	52.7 ←	→ 53.2
Yield, DM Mg/ha	22.0	20.0 ←	→19.8

Data adapted from Ferraretto et al., 2017 Simulation performed with equations by Paula et al., 2019

Conclusion and Implications

- These equations indicate that increasing cutting height improves forage quality at the expense of DM yield. Therefore, increasing cutting height should be done cautiously if planting area is limited.
- These equations have potential to be used as a management tool to help producers predict the nutritive value of their corn silage at different cutting heights.

b.saylor@ufl.edu